A Novel Graph based Fuzzy Clustering Technique for Unsupervised Classification of Remote Sensing Images
نویسندگان
چکیده
This paper addresses the problem of unsupervised land-cover classification of multi-spectral remotely sensed images in the context of self-learning by exploring different graph based clustering techniques hierarchically. The only assumption used here is that the number of land-cover classes is known a priori. Object based image analysis paradigm which processes a given image at different levels, has emerged as a popular alternative to the pixel based approaches for remote sensing image segmentation considering the high spatial resolution of the images. A graph based fuzzy clustering technique is proposed here to obtain a better merging of an initially oversegmented image in the spectral domain compared to conventional clustering techniques. Instead of using Euclidean distance measure, the cumulative graph edge weight is used to find the distance between a pair of points to better cope with the topology of the feature space. In order to handle uncertainty in assigning class labels to pixels, which is not always a crisp allocation for remote sensing data, fuzzy set theoretic technique is incorporated to the graph based clustering. Minimum Spanning Tree (MST) based clustering technique is used to over-segment the image at the first level. Furthermore, considering that the spectral signature of different land-cover classes may overlap significantly, a self-learning based Maximum Likelihood (ML) classifier coupled with the Expectation Maximization (EM) based iterative unsupervised parameter retraining scheme is used to generate the final land-cover classification map. Results on two medium resolution images establish the superior performance of the proposed technique in comparison to the traditional fuzzy c-means clustering technique.
منابع مشابه
Semi-supervised Fuzzy Clustering Algorithms for Change Detection in Remote Sensing Images
For the problem of change detection it is difficult to have sufficient amount of ground truth information that is needed in supervised learning. On the contrary it is easy to identify a few labeled patterns by the experts. In this situation to avoid wastage of available information semi-supervision is suggestible to enhance the performance of unsupervised ones. Here we present the fuzzy cluster...
متن کاملImage Fusion and Fuzzy Clustering based Change Detection in SAR Images
Change detection in remote sensing images becomes more and more important for the last few decades, among them change detection in Synthetic Aperture Radar (SAR) images are having some more difficulties than optical ones due to the fact that SAR images suffer from the presence of the speckle noise. This paper presents unsupervised change detection in multi-temporal Synthetic Aperture Radar (SAR...
متن کاملFuzzy clustering algorithms for unsupervised change detection in remote sensing images
In this paper, we propose a context-sensitive technique for unsupervised change detection in multitemporal remote sensing images. The technique is based on fuzzy clustering approach and takes care of spatial correlation between neighboring pixels of the difference image produced by comparing two images acquired on the same geographical area at different times. Since the ranges of pixel values o...
متن کاملSpatial dynamics for relative contribution of cropping pattern analysis on environment by integrating remote sensing and GIS
Agriculture resources reflected to be one of the most imperative renewable and dynamic natural resources. Agricultural sustainability has the premier priority in all countries, whether developed or developing. Cropping system analysis is indispensable for grinding the sustainability of agricultural science. Crop alternation is stated as growing one crop after another on the same piece of la...
متن کاملA Comparison of the Performance of Fuzzy Algorithm versus Statistical Algorithm Based Sub-pixel Classifier for Remote Sensing Data
It is found that sub-pixel classifiers for classification of multi-spectral remote sensing data yield a higher accuracy. With this objective, a study has been carried out, where fuzzy set theory based sub-pixel classifiers have been compared with statistical based sub-pixel classifier for classification of multi-spectral remote sensing data.Although, a number of Fuzzy set theory based classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014